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Summary ; Let {X
~, 

i ~ 
o} be a sequence of independent identically distributed

random variables with finite absolute third moment. Then Darl ing and Erd~s

have shown that

~n n - 9 . n  411
£t p~~ < + 2 

+ ~~~ ) = exp(-e
_t
)

L.i=O i ½for -~~~ < t < ~~ where j = max ~ and = (2 £nLn n) . The result is
~ O<k<n k’

extended to dependent seque~c~s but assuming that {X~} is a standard stationary

Gaussian sequence with covariance function ~r1}. When {X1} is moderately

dependent (e.g. when v( r X
1) ‘u n~ 0 < ~ < 2) we get

1=1 H
~n(- -. £nLn n)

Lt P(p < + (1 - 1) 2111 
+ = exp(_ e t )

f
where H is a constant. In the strongly dependent case (e.g. when

v(Z~~1 
X
1) “.

. n2r(n)) we get

R.n h r  - t h 4 1 1
ft P(p < + ½ ~ t ) = exp(-e~~)n — /r~ Xi,~ 

X1i~

for -~~~ < t < ~~~.

I .



1. INTRODUCTION: Let {X .., i ~ O} be a sequence of independent identically

distributed random variables with mean zero and variance one. Many classical

problems have come out of the Studr of the partial sums Sk 
= Z~ I~Il 

x~. The

celebrated law of the iterated logarithms (LIt) gives the first order terms in

the growth of Sk. It states

S
(1.1) him k 

~ 
= 1 a.s.

k-,co (2kth&n k)~

Sometimes the LIL is stated in the following Feller form, giving information

about the second order terms. For ~(n) positive and nondecreasing

0
> k½ $(k) 1.0.) = or according as

1
(1.2)

exp(-½ (1,2(n) )

Thequantity S~/k½ in both (1.1) and (12) can very easily be replaced by

max s1,~½ 
. In this paper we will be interested in the behavior of this

l<i<k
nixTmum. Besides the fixed growth rate given so precisely by (1.2), the

randomness of max S./k ½ is also of interest. Darling and Erd~s[3] prove that
l<i<k 1

if {x.} has finTt~ absolute third moment then

S 9..n(&n n/4Jfl(1.3) 
n~~ ~~~~~~ ~~ ~ (2 Ln2n) ½ + 

2(2Ln2nj~ 

+ 

(2Ln2n)~ 
~~

= exp(_e
_t
)

for all -~~~ < t < ~~~. As usual ~flqfl = qth iterated logarithm of n.

The invariance principle of Erd~s and ICac offers an elegant tool to prove

these results. The required results are f irst proved in the special case when

are normally distributed. The Central Limit Theorem lets us approximate
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partial sums Sk/k by normal variables. The results then follow by essentially

concluding that this approximation is, in fact, very good. Thus the study of

the partial sums from the stationary Gaussian sequences is more significant

than any other particular case in this area.

From now on, let {X1} be assumed to be Gaussian. It is interesting to see

how (1.2) and (1.3) are affected when the assumption of independence among X1
is relaxed. Theorem 4 of Lai and Stout [5] states the following.

Theorem (Lai and Stout). Suppose there exists 0 < x < 2, y > ct/2, M > 1, ~S > 0, ~ > 0
and positive sequence {L(n)} satisfying the following conditions

(i) nC~L(n) << v(n) << naL(n) as n + ~~, v(n) = variance(~~~1 . ) .

j
~ 

v(n+a) 
- 1J < M(!)1 if 6n > m > M.

(iii) him sup { max LII) 1, <
~~~ 

n(tn Ln n) < j  < n L(n)
(1.4) and

lim 
~~~ ~n(2.~~ n)~~ < j < n L(~i) 

} > 0
(iv) V p > 0 there exists and l > A ~ > 0  such that if A n > m > m  then

(m)
P 

< 
L(n) 

< (fl)
Pii. — L(m) —~~i

Let ~~t) be a positive nondecreasing function on [l ,OD). Then

L 0
P(S~ > (v(n)) ’~$(n) i.o.) = or according as

1
(1.5)

2/cz-l 2
IT ~ 

exp(- 2 )dt or

In Sections 2 and 3 we extend (1.3) in the cases of moderately and strongly

dependent stationary Gaussian sequences. We prove that if 
O~i~n 

S1/(v(i))½
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and

(1.6) v(n) “ n”L(n) as n +

with some additional conditions on the slowly varying function L(n) to make it

well behaved then

(1 .7) 
n~~ ~~~n 

< (2Ln2n) ½ + ( !~ 4 ) + 

(2th2n)~ 
= e~~(-eTh

for all -~~~ < x < oo~ Also if

(1.8) v(n) “-‘ + 
1 

~ 

2 ( )
(in n )

for some 0 > 0 again with some additional conditions on r(n) then

½ in2 h r  - in4fl -x(l.9)it 
~~~ 

< (2tn2 h r  ) + ½ ½ + ½ ~ + exp(-e )
n-~ 

— 
(22n2 l/r~

) (2Ln2 h/rn)

for all -~~~ < x < co.

The proofs as in [3], compare the maximum to that of a suitably chosen

stationary Gaussian process on an appropriate set. The sketch of the main idea

is as follows. We know that even though {S
k/(v(k))

½} forms a standard Gaussian

sequence, its no longer stationary. However, we could view this as coming from

a stationary process being sampled with increasing frequency. If v(k) ‘~~ k~L(k) ,

0 < a < 2, then sample from an a-process (i.e., the correlation function near

the origin is ~ 1 - ½ It I a) at points 1, 1 +4 , ~ + 4 + 4, . . . ,  1/i 

Thus we have n observations for this a-process in the interval about [0,Ln n].

The maximum of these n observations closely approximates j
~~
. In this, what we
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call a “moderately dependent case”, the frequency of sampling does not depend

on the covariance function of {X.).

It is interesting to note that the above procedure fails when a = 2. Oddly

enough, we observe that in this case, the normalized sums process can be approx-

imated by a Brownian motion with transformed time axis. If we have to carry

the above analogy in this case as well, then we have to sample an a = 1 process

at a frequency that depends on the covariance function of the X-process. At

any point k, instead of placing the next observation at a distance i/k from the

kth observation, we place it at a distance approximately Ir ’ (k)/ r(k)I. We will

call this the “strongly dependent” case. Thus, in this case, 1i~ approximates

the maximum of a a = 1 process on the set [0, in i/r~}. This allows arbitrarily

slow growth rates of 
~
in by choice of r~. Though not surprising, it is inter-

esting to note that in all cases, only the double exponential is obtained as

the extreme value distribution.

There may seem a discripancy between (1.5) and (1.9). According to (1.5),

if v(k) = k2L(k) satisfying (1.4), then the first order term for is

(2 2.n2n) ½ while as (1.9) places it at a much smaller number viz (2 in2 i/r~)
½.

None of the covariances looked at in (1.8) satisfy (1.4). In fact, we could

not find any examples of covariance functions satisfying (1.4) for cx = 2.

The next two sections give exact statements and the proofs of the moderately

and the strongly dependent cases respectively. Examples of covariance functions

satisfying the given conditions and some comments are in Section 4.

2. MODERATELY DEPENDENT SEQUENCES: Throughout the remaining, {x~. i > 0) will

be a stationary Gaussian sequence with mean zero, variance one and

r. = E X0X .,. Let v(k) = variance of 
~~ 

X 1; 
~k = (v (k))~~~~~0 X . for

k = 0,1,2,... and p = max
~ 0<k<n

- . -~~~ -~~~~ ~~~~~, ~~~~~~~~~ =~~~~~-----~
-•~~~ --~~~ - - •—-- ~

-- —-—-- 
~~~~

-= =- -
~~~~~~~~~~~~ - -
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Theorem 2.1: Suppose that for sufficiently large k,

(2.1) 1i=-k r. = k’~L (k) > 0

-l < 6 < 1 and L(k) is a slowly varying function satisfying

(~) for sufficiently large £ , ~~
-
~~~~~~

- is bounded if k > £~, 0 > 0 and
(2.2) (ii) if L > k , k such that (L-k)/k~~

’ -
~ V ~r > 0 but ~~ + c

for 0 < c < ~~~then

it £ L(t) - L(i - k) 
-k~~ k L( & - k) -

Then for a = 6 + 1,

I

(2.3) 
~~~ 

P(PJ~ < + i.— ) = exp(-e~~)

for all -~~~ < x < ~ . We write

½ (h/a - l/2)in3~ 
+ inifi / /4)~~

= (2in2n) ; = x~ + — a

and

Ha = it J~’ eUP( max ~ (t) > u)du
T-i oo 0<t<T

where ~(t) is a separable nonstationary Gaussian process with E t (t) =

and Cov(~ (s) , r(t)) = 151
a~ It l a - Is-ti ”.

Before we proceed to prove (2.3), we will state and prove two lemmas about

E 
~k~L 

which will simplify the proof of the Theorem.

- ~~~~~~~ - . — - --~~~~~~~~~ .- —~- - - .
~~~-
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Lemma 2.1: For [exp(ca)] <k < £ < [exp(c(m+h))], c > 0 and m sufficiently

large.

(2.4) 1 - (½+ c ’) v(&-k) < E  
~k~L 

< 1 - (½-c ’) v(&-
k)

By c’ we denote a small positive number depending on c, not necessarily the

same at all places. Also (.] denotes integral part.

Proof of Lemma 2.1: Since v(k) = 
~~~ 

r., (2.1) and Theorem 1 in

([4], pg. 273) gives that v(k) is regularly varying with exponent a = 6 + 1 and

(2.5) l/ a k aL (k) 
-‘

~ 
1 as k + ~~~.

-k~~~+kDefine 
~ki = 

~j=l 
Z1)  

r1. Then

v(k)

(v (k)v( i))

(v(k)v(&))½ - (v(k) + 
~~~ 
)

(2.6) = 1 - 
£

(v(k)v(9j)1

v(k)v(&) - (v(k) + w~~)

v (k)v ( i) {1 + (v(k) +

v(i-k) + 2
Notice that v(L) = v(k) + v(i-k) + 2 and define Eki = v(k)
Then the R.H.S. above is equal to

v(t-k) - /v(k)
• (2.7) 1 -  2.

v(i){l + (v(k) + u~(2.) ( v(k)v(i ) Y }

2
v(9.-k) } 1 • 

~~~~ 1 + 1 E -½ 
+ 

Wki
= I - V?.kT (1 - v(k)vçc~y 

I + E~~) ~ + kL~

-. - -~~~~~~~~~~~~ —-—- -~~~-—--.-~~ .- - -~~~~~~— 
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We need to show that the product of the last three terms in (2.7) could be

bounded above and below by ½ + c’ as k -‘. 
~~~. At (a), (b) and Cc) below we

find bounds for various quantites involved. First we look at v(L-k)/v(k).

The argument used here is repeated several times during the rest of the text.

We have 0 < 2.-k < c’k. If (2.-k) < k0 for some 0 < 0 < 1 then we can write

v(2.-k) < L(2.-k) kaO for large k and

v(2.-k) 
< 

L(&-k)
v(k) —

Since L(t) is slowly varying function, we know that L(t) t~~ -
~~ 0 and

L(t) t~ -
~~ ~ as t -‘. ~ for all y 

> 0. If k0 < 2.-k < c’k then by (2.2(i)),

L(L-k) is bounded. Thus

(a) v(i-k) Iv(k) < c’

for all k sufficiently large. Next, we will look at c
~~ 

= r~ . For

large k, by (2.1) we have

< (const.)(i-k)9.6L(2.)

Hence

2
_ _ _ _ _  

-k~~~
6 L2 i

— con T L(k)L(2.-k)

The fact that we need (2.-k) sufficiently large to make the approximation

1+6 . . . . .
v(2.-k) ‘t. (2.-k) L(i-k) is inconsequential here, since, if (2.-k) is too small

then the L.H.S. above is obviously small for k large. If (2.-k) < k0 then the
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R.H.S. above tends to zero as k + ~ by same argument as at (a) and if

( 2.—k) > k~ then L(&) /L(&-k) is bounded by (2 2(i)) and L(Pj /L(k) is always

bounded for the range of £ and k under consideration, Thus

2

(b 
- iWk&(

v(k)v(i-k) — 
C

lW kL l
for all k sufficiently large. Obviously ½ < C’ as well. Finally,

(v(k)v(&)) V

(c) _____ 
ik 2. L(L) 

< C

for all k sufficiently large. Substituting in (2.7) we get the result. V

Lemma 2.2: If 2. > k -
~
. 

~ such that i-k > £0 for some 0 >0 then

IW kL I Li(2.8) it 
~ 

(—) = 0
k9c0 (v(k)v(2. ) )~

for some y > 0.

Proof of Lemma 2.2: We can write

k 2.-aIw~~i = I~ =i 1i=- (i-j) r~ - v(k)I

< 
~~~~ 

(2.-j) 6 L(2.-j)

1/a ~2.a L(2.) - (L_k)a L(2.-k))

~ 1/a (La(L(2.) - L(&-k)) + ctk2.6 L(i-k))

~~~~~ 

6 L k £ L(i)-L(i-k)
- kt (2.- ) {l + L(L-k)

~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~V~~~~~~~~J-~~ 
V~~~~~~~~~~ V~~~~~~~~~~~
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If 2./k is bounded then we can b -und the terms in the bracket above by a

V constant since L(&)L

_

(L
L
~~

_k) 
is always bounded for 2.-k > by (2.2(i)). If

2./k + however, then ~ 
L(i)

L

_

(i
L
~~

_k) 
0 by (2.2(i ). Thus

i~ 2.I 
½ < (const.) a 

ki6L(t-k)

(v(k)v(9j) (ki) (L(k)L(2.))1

1—6
k 2 L(i-k)

= (const.)(1) (L(k)L( i))1

Choose 0 < y < . Then the R.H.S. above is o((k/2.)~
’) as k + ~ because here

both L(9,-k)/L(k) and L(2.-k)/L(2.) are bounded due to (2.2(i)) (Notice that the

case iS = 1 is excluded).

We now turn to the proof of the Theorem.

Proof of Theorem 2.1: The proof is split into two parts. First establishing

V 

(2.9) u r n  inf P(~.i < + 
~~~— ) > exp(~e X)

for -~~~ < x < ~~~. We recall that ~i = max 
~k 

where = (v(k))~~ ~~~ 
x.

~ 0<J~<n 
— i

The constants and are defined afteF (2.3).

We will split {Y~, 1 < i < n} into blocks tm < ~~ < t
~~:l~I 

m = 0,1,... ,m~

where t = [exp(crn)] for some c > 0 and m0 is such that tm n. We will find
m 0

a lower bound for the probability in L.H.S. of (2.9) by treating Y~ in different

blocks as independent since E 
~k~i 

will be shown to be nonnegative. Now, suppose

E YkYL was, in fact equal to 1 - ½(.&~~) .  Let E(t) be a standard stationary

Gaussian process with covariance function 1 - (½ + c) i~ i a for 0 < t < c. We

can sample {~(t), 0 < t < el at points s~ where s~ 
= 1/tm and Sk = 5k-1 

+

It would be easy to see that max F(sk) provides a stochastic upper bound fork

- 
- - - --

~~~ 
- --—-----—--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~V V V
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max 
~k 

However, by using Lemma 2.1, we can get explicit bounds for
t <k<t *l— m
E 
~k~i 

only when (2.-k) is large. Thus it is necessary to delete all but a

subsequence {~~ } of variables from the rnth block. The proof will follow
V 

m,h

this general outline. To start off, we also need to exclude Y1,. ••I Y(Lun)½

from consideration, since all the bounds gotten in the Lemmas work only for

large k.

For the first part of the proof, define = + x/ )ç1. Then for

max
‘~ (inn) ½<k<n

< u ) - P(~~’ < u ) I  < PC max 
~~~ 

> u )n n — n — 0<k<(inn) l n

< (thn)~ q(u~)/u~

where ~~u) = (2fl~~
1 exp(-u 2/2). The R.H.S. above tends to zero. Thus we can

replace p,~ by 1~’~
’ in (2.3).

We will prove (2.9) with w1~ replaced by ~n’ For k and 2. large E > 0

since by (2.1), v(k) + 2 
~~ 

> 0 => > -v(k)/2 and v(k) + oi~~ >v(k)/2 > 0.

This, in view of (2.6) shows that E > 0 for k and 2. large. By Slepian’s V

Lemma [11],

m0
(2.10) P(p ‘ < u ) > 11 P( max Y 2. < u~)n n m=m1 t

ff~
i<tm+1

where in is such that t ~ (&nn) ½ .1 m1
The next step is to select a proper subsequence tin k from the ~

th block.

Define tm h  = [exp(c (m 2+h)½)] for h 0,l,...,(2m+1) i.e., tm o  = tm and

tm 2m+1 = tm+l • Define = ‘
~“t 

- for tm h  < 2. 
~ 

tmh+ 1~ 
h = 0,1,.. .,2m.

L~ . : V 
________ V - - V~~~~~~~~~~~ V -. V
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Then

(2.11) PC max Y~ < u ) > p( max V < u - )
t <2.<t 

- 

0ch<2m h 
— n

in— m+l — —
m m...p( ma.x l~~

> 2~~F
. t <L<t in• m m+l

where a ’ < cx. We will get an upperbound for the R.H.S. above by using the

following result.

• Theorem: (Marcus and Shepp[6]): Let {~~, i > 1) be a sequence of jointly

Gaussian random variables with P{sup ~Y1j < oo} = 1. Then , letting
i>l

a
2 

= sup var (Y1) ,  for p>O and all sufficiently large t, we have
i>l

(2.12) P(sup iY~ I > t) < exp{-(l - p)t
2
/(2a

2)} .

i>l V

In order to apply this to Z2., we need to verify that P( max Z2. < co) = 1.
t <i<tin—. m+l

It is sufficient to verify that max V0 is finite with probability one.
A..

n~— m+l
By (2.4) , for t~~

< k  < 2. < tm+l and m large,

2.k a Lt k’
(2.13) E YkYL 

> 1 - (½ + c ’) (j ) L(k) ~~~ 

- £~~ 

~
-i-—

~

We write the first inequality above for the sake of convenience. For (i-k) too

small, we may not be able to write v(9.-k) ~ (2.-a~~ L(2.-k). However, the second

inequality is correct for large k since we have chosen a’ < a. The argument

for other values of (2.-k) is similar to the one used before. Now, for values

of k and 2. under consideration 0 <.&~~ < c. By Slepian ’s Lemma (11],

max Y ,, is stochastically smaller than the maximum of an a’-process (i.e.,
t < R.<t

in— m+l
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correlation near zero is 1 - (const.) It I” ) on the set [0,C], The later is

obviously finite with probability one. Thus from (2.12) we have

(2.14) 
tn~

&<tm+l ~~~~ 
)< exp{ -C.~j~) 

~~a ’/2~~ ~~~

where a2 = max Var(Z 2.). But for t 
~~~~~~~~~~~~~ h 1’in 

~~~~~~~~~~~~~~~~ 
in,

in— m+l

Var(Z 2.) = V(Y 2. - 

~~~~ 
~

m ,h

= 2(1 - E Y LYt ~m, h
a’

< 2c ’ ~ ~ 
I11~h) 

using (2.13)
- m,h

- t  a’
< c ’( m,h+l mlh)
— tm h

< c’ m~~ for all h = 0,1,...,2m.

Hence the R.H.S. of (2.14) is at most

exp{- (const.)(2.n rn)2)

and the R.H.S. of (2.10) is at least

in
0

II {P( max Y~ < u - 
~~

‘

~~~~t~~~~2) 
- exp(-(const.) (in rn) 2))

m~m1 0<h<2m m,h ‘~ m

V 
(2.15) = E

~ 
~~~~~~~~~~ 

Yt h 
< U  - 

~~‘f2 ~

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~••~
•
~~

• V~~~~~~ V V .~~~~.. .



-- — = -- --
~~

-
~~
-
~~::

mo
where E = ii {i - exp(-(const.)(&n m) 2)/ PC max 

~~~~ 
5u - 

2.~~~
2 

} .  We
• i m=m1 0ch<2m in,h ~ in

have established before that max Y
~ 

is finite with probability 1 for all
0<h<2in in,h

in. Hence P( max Y
~• < u~ - 

Lii 
,
m
2) 

+1 as n + ~~ and
0<h<2a m,h m~ /

> exp{-(const.) I ~~~~~ 
in)

3”2

I m=ml

The R.H.S. above tends to one as n + ~~~. It remains to show that the product in

R.H.S. in (2.15) is bounded below by the required limit . Now , since tm h  and

~~~ are sufficiently far apart for h jt j ,  we can write

E 
~k”L 

~~ 1 - (½ + c’) L(&-k) 2k

for values of k and £ in the set t~~ = {tm h ~ 
h = 0,l,...,2in}. Notice that for

such values of k and 2., (L-k)/k cannot tend to zero very rapidly i.e.,

(&-k)/k1
~~ + V y > 0. Hence applying (2.2(u )) we have L(i-k)/L(i) + 1.

Also, since 2. < (1 + c)k, L(2.)/L(k) + 1 as well. By choosing an appropriate

value of c’, we can write for large k that

cx
B 
~
‘k~
’2. ~ 1 

- (½ +

for k ,L e r~ . Let {~ (t) , t > 0} be standard stationary Gaussian process with

covariance function I - (½ + c’) ,~ i
a for 0 < t < c. We see that the covariance

matrix of {Y2, 2 E is bounded below by that of 
~~~~~ 

2. € T
~~~

}. Thus

t
in

• max V is stochastically bounded above by max c which is at most
0<h<2m tm,h 0’zh<2m m,h in

V tin

_ _ _  _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~
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max F~(t) . Thus the product in the R .H.S . of (2.15) is asymptotically at least

in
0

(2.16) exp {- ~ PC max ~(t) > u~ - 
£n

,
i~ 

~m
~

m1 O t c  in

~ exp { c(u~ - rn~ ”2 
)

/ 
+(u~ - 

~~~~~~ + C,)l/a H )

by Lemma (3.8) of Pickands [9]. H~ is defined in the statement of Theorem 2.1.

Substituting the value for u~, we have the R.H.S. of (2.16) asymptotically equal

to

_ _ _  

In

(2.17) exp {- C (1 + 2c’)1~~ exp(-x + 0(1)) ~ exp(u~ in m/mcL’/2))  .

m=m1

V 

Spliting the sum into two parts say in
1 

< in < (m0) ½ and m0
½ 

< m < in0, we see that

for large n

~ exp(u £n ~/~a’/2) < in
0 

exp(u~) + in
0 
exp(l/(2n ~)

a’/2) = m
0(l + 0(1)).

flaIn
1

Substituting in (2.17) we get that

him h f  P(p < + x/~~) > exp(-(l + 2c’)~’~ e~ ’)

for al l c’ > 0. This concludes the proof of (2.9).

It is much easier to show the otherside viz,

(2.18) u n  sup P~~ ~ 
+ x/;) < exp(-e~~)

We just exclude the appropriate number of and then compare them with variables

selected from an appropriate a-process by Berman ’s Lemma (1]. Let Un~ 
in

0 
and

- .V- . - - •_ V - - 
- -— -~~ - —-V
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be the same as defined befOre. We will define new subsequences tm h  and the

sets r~. To avoid clumsy notation, we will use the same symbols. Thus, it

should be noted that tm,h 
and are defined two different ways in this section

and two different ways in Section 3. All efforts to try to define a subsequence

that will work for both parts of the proof in each section have failed so far.

Care should be taken in noting an appropriate definition of tin h and in

reading different parts of the proof. Let

h
h = [exp {c(m + 2’in, (in in) 

,a

and 

V

= {t
~~h

; 0 < h  < [(1 - c)(uu ~)
2/a] = m.~ say)

(i.e., we have clipped a small portion from the right hand side for each of the

sets Ta). Now

in
0

V (2.19) P(~i < u )  < p{ n ( max 
~~~~ 

< u ~)}
in=inj  t~~~€t~ rn,k

no in
0 in0 ~~~~ % u 2

V m=m1 t
~~~~

T
~ 

tm h  
~~. %) + ~ 

p~q~m ~~ J~ ~
P2.~4h 

exp(- 
~ + 

~P2.qh

The last inequality follows from Berman’s Lemma. C is some positive constant

and

~PLqh 
= E(V 1~,2. tq,h~ 

~~ P ~ q

= 0 if P = q .

-_ -. -- - V - V -~~~~--~~~~~
—

~~~~~~~
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Notice also that the largest value of Cl - 

~~~~~ 
depends only on C and is

absorbed in C. By Lemma 2.1,

V(tp 0 - ~~ h~B Y  Y~ < 1 ’~~(¼ -c ’) ‘
~~~ ~~

‘ .

~Pt  q,h “ q,h

~ 1 - (½ - 

L(tp &  - 
tg)~~ 

~ 

tp~~ - tg~~ 
~q,h q,h

Because of the above definitions, when P ~ q, tp 2  - tq~)~ ~ tq,h (e - 1) 
~ 
C
2tq,h~

By the same reasoning as before and condition (2.2), we have

L(t~~2 
- tq,h)/L( tq,h) 4.. 1. Thus

(2.20) B Vt Vt 
< 1-C ’

P,2. q,h

for al l P ~ q and q large. For all m, m.,~ < (in in
0
) 
2’c&

• Substituting, an

upperbound for the sum in the R.H.S. of (2.19) is

(2.21) c 
q
~~

1

{m(;1 Cm m0)
4/aexp (~ 2-c’~ 

+ 

~~~~~~~~ ~
Un mO)

4/apP~~h exp(- l+p
~~~h~~

for all 0 < r~ < 1. u~ “.. 2 in2n and in
0 
~ (in n) We choose

ii < e’/(2-c’) for the value of e’ that works in (2.20). This makes the sum of

the first term in (2.21) to be 0(1). For the second part of the sum, we know

by Lemma 2.2 that

v(t h
)½ ~ h~

’
B y y < ( (~~ ) 

) ) + (~~~
‘ )

tp,2 tq,h — v 
~~ P,9..

for some y > 0. But v(t h)/v( tP ~ ~ ~ h/tp 
)a for large q. Thus for someq, ,t q, ,~

y ’ > O

—. 
-V T.._ ~~. V -- —
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• < (t /t )Y
~P2.qh — q,h P,i

< exp(-y’c m0~’)

for all p > q + (in
0
) 

~~
. Thus the sum in (2.21) is 0(1). To bound the product

in the R.H.S. of (2.19), we define a standard stationary Gaussian process

{~ (t), 0 < t < c} (different from the one in the first part of the proof) with

covariance function l_ (~_~ t)j t~anear origjn. We bound

/

P( max Y < u ) < P ( max < u )
tm h E:tm 

tr n h  — n — 

1<h<% rn,h tm 
— n

By Lemma (3.8) of [9], the R.H.S. above is asymptotically equal to

V C(l_E) (l_C ,)l/a Ha ~~
2/a ~

Substituting in the product we get the desired result (2.18). The details of

the last argument are very much similar to those in the first part of the proof

and hence are not repeated . This finishes the proof of Theorem 2.1.

3. STRONGLY DEPENDENT CASE: In last section we considered the cases when

v(n) “a naL(n) for 0 < a < 2. In this section we will have a = 2. The sequence

IX ., i > 0} and ~j are as described in Section 2.

Theorem 3.1: Let f be a probability density function on the real line and set

Ak = {(x ,y)/-~ < x < ~; 0 < y < and f(x+k) > y)

Assume that the correlation function rk = EXOX.K satisfies



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V V V _~~~~~~~~~~~~~~~~ V~~~ V 
VV 

-

18

(i) rk r,~
f(x) A

(3.1) -

(ii) f o r k > k 0, A.
~

n A 0~~~
A& n A 0 for 0

~~~
k < L .

Let rk 
-

~ 0 be a slowly varying function such that for large k

k
(3.2) 

~ 
rj =(2 + E k) k r ki=-k

with Bk = ~ 
1 e ~ nonincreasing and 0 > 0. Then

(in k)

(3.3) £t P(i~ 
< Bn + x/~~) = exp(_e

_X
)

for all -~~~ < x < ~~~. Here

= (2 in2 l/rn) ½

and
in2 i/r n - in 411

— .

Condition (3.1) is used and discussed in Mittal and Ylvisaker [7]. From

discussion there, we have

X~ = (l_r~)
½ w~

k 
+ 1k ~ i •5~ 

k

where and are independent normal with mean zero, var (Wi
k) = 1 and

E I kIi = r k V t >k . Thus V

~k ~~k
V 1i=l A~~ 1i=l “i “

= 
½ 

= (l_r k) ½ 
+ — 

½~(v(k)) (v(k)) (v(k))
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The general idea of the proof is to show that the variables ~~~

are too small and hence we can replace the process {Vk} by {kIkI(v(k))
½}. (In 

V

fact, we replace it by T1~ = Tk/(rk). We deal with the new process in very much

similar ways as the last section. The following Lemma does the first part of

the proof.

Lemma 3.1: Under the conditions of Theorem 3.1,

(3.4) lim (Ln k)6 

~k 
= 0 a.s.

k
~~

for all 6 > 0 sufficiently small, where 
~k 

= 

~k 
-

Proof of Lemma 3.1: Let us define tk = [exp(k1)] for 0 < y < 1 and

A.K = A k(c)={ max
tk.~.

i<tj+l

for c > 0, k = 0,1 The result follows by symmetry and the use of

Borel-Cantelli Lemma if we show that P(k) < ~~~ . To compute P(A.K) ,  we find

lower bound on the correlations of r., tk < j < t1(,~]~ We first note that as a

result of the assumed conditions, rk > 0 and for sufficiently large k, rk 
< r

~
V i < k .  Now

j r . + ~~~~
‘ r. j(r2)

½ r2. ½(3. 5) E = E Y2Y. - —
~ ½~ ~~~-‘ 

~ Cr . v(L)) (v(j)) r~

But

r~ { - 

(v(j)) ½ 
} = r~~ {

(v(J)) 3r~ } ~ ( £) ½E > 0 for large j

U . - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and

B Y  V J j+l i > (vQ)) —

~ Cr. v(2) )½ v(lJ 
- 

(v(L) )½

= 

Cv(i))½ - 2
- (v(L) )½

4, 
L (~~~~~

-
~~~~
1) . V

3 j
£

For tk < 2.,j < tk+lI .&2 < (const.) k~~~~~~. Thus for large j ,  since r. > r2.,

E 
~~~ .~~Ej:k.~~Ej(l - 

k~~ ’

jr.½
where c > 0 is a constant. We know that v(Z.) = 2(1 - 

~ 
-~j  “a B. and E. is

(v(j))~nonuncreasung. Hence

B 
½ > 1 - c1 k

’~~ for tk < j,L < tk l(v(Z~)v(l2))

Now,

P(A~) = PC max ~~ . > C)

k—3 k+l

(3.6) < P( may 
½ 

> 
C

— 

tk.~
3<tk l  (v(Zj) (Et )

c ½ ~~ c ½
~. P {( 1

1 ) 
~~ ~ 

+ ( l - 1
1 ) U > ~~~k2 }

k~~~ k+1 k k~~~

• where is maximum of n independent standard normal variables and U also
standard normal, independent of M .  An upperbound for the R.H.S. of (3.6) is

~~~~~~~~~~~~~~~~~~~~~ 
V-V — 

~~~~ V VV- V ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
- 

V~~V V V V
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k-i l k 2c 1

where •(x) = f~, ‘Xu)du . Noticing that tk+l
_t
k 
4, exp(k~), we see that the above

is summable over k. This completes the proof of the Lemma.

Next, we can replace p
~ 

in (3.3) by ~ = max Ik/rk = max because
0<k<n 0<k<n

Xfl I ~ 
- vn I ~ 0<k<n

and

x~
/Cun n) 6 ~ 0 as n + ~ for all 6 > 0.

For the proof of (3.3) with in place of p~, we follow the same proce-

V dure as in Section 2. We compare {rlk} with a sequence sampled from an

appropriately chosen (a=l) process. Unlike Section 2, the frequency of sampling

here depends on the covariance function {rk}. Some of the details of Section 2

become easier here in view of the observation that ‘k = B(rk) where B denotes

a standardized Brownian motion. Sketch of the proof is given below avoiding

repetition of arguments in Section 2.

Define (different from all previous definitions)

tk = Er (e~~
k)] ~~~ = [r Ce Cin

~~~~ )l

and

H t~~
={t

~,k
; 0 .~~k~~~2m} .

~~~~~~~~ V~~~~~~~~~~~ V V V V - V  V~~~~~~~~ VVV V - V  V V V ~~~ V~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V V V V - V V V V V V V V V V V V VV
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Here r~~(6) = mm r( t) = 6. Since r is monotone, t is nondecreasing. Alsok V

r(r~~(6)) = 6. By similar arguments - that lead to (2.10) we have

(3.7) P(v’ < u) > 
- 
It P( max < u)

inin1 t~~~~~Et~~ m,k

where U = 
~ 

+ x/ ;; in
0 
and in

1 
are such that ~ 

4, (Ln ~) ½ and m
0 = 

min {m j t > ii).

Also v’ = max r~ . Define Z
2 = 

- for ~ k < £ < ~ k I Then
~ (in n)½<k<n m,k+l ~ in, +

P ( max ri2. < u )  > P( max < u - 
~~~~~ !~~

t
~~

i<tm+l 0<k<2m m,k ~

Zn m-P( max Z0 > 
~ 

) .
t <i<t
in— rn-i-i

But

PC max Z2 
> ~~~ ) < (2m + 1) P( max - ~~‘k~~ > 

Lii m
m t~ k.~~

<
~m k÷1 

r2. r
~ ~½
m k+l

< (2m+l){P( max 
1L~~trn,k+l 

> 
L n m

tm,k.~
i<tm k+l r2. in

+ P( max I
~ 

(r~~- r;
½ 

> 
L n m

tin k.$~L<tm k+l m,k+l ni,k+l m~

(3.8) < (2m+l){P( max (IL 
- > 

2.~~in r~ )
t
in k.5~

L<tm k+l m,k+l m1 in,k+l

+ P (I (r~~ - r;
½ ) > 

Lflm
tm,k+1 m,k+1 m,k m

Since I = B(r ), we can write I - I 
- 

as B(r - r ) .  Using proposition - •

in, +1 m,k+1
12.20 of Brieman [2], we get the first probability in the R.H.S. of (3.8) to be

atmost

— ~~~~~~~~~~~~~~•- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •_~ .. - J
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V 
(3.9) - > 

~~~~~~ r~m,k in ,k+l in m,k+l

But rt “a exp(_C(in2+k)i). Thus
m,k

var(I
~ 

- I ) = r~ - r
ink tm k+l m,k tmk+ l

‘s.. exp(-C(rn2 + k + 1)½) [e~~ - 1]

4 ,_  r2m tm,k+1

C ~(2 
in lfl)

and (3.9) is at most Zn m Substituting values for r
~ 

, we get
m,k

approximately the same bound for the second probability in the R.H.S. of (3.8).

Hence

2. 2(2m+l)~ (2in in
)

(3.10) P( max Z,, > ~~~~~ ) < 
C

t <i<t ‘
~ m 2 u r n  V

in— . m+l

The R.H.S. of (3.10) is summable over m . Following the same line as in Section

2, it only remains to show that

P( max < u~) 
4, C u $(u ) (½ + c’) -

0<k<2m m,k n ii

(Notice that the constant Ha for a=l is explicitly given in Theorem 4.4 of [8]).

Let {~(t), t > 0) be a standard stationary Gaussian process with covariance

function 1 - (½ + c ’) ~~ near origin. Then

4-

-V 
V •V~~~~~~~~~ V~ •-V~~~~ ~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ SV ~~~~~~~~~~
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~~ ) = (~~ /r~ ) ½
m,k+i m,k m,k+R, m ,k

“a exp {-~ (On
2 + k + L)½ - (in

2 
+ kf~)

V (i+C)E 2

4(in +k) 
V

- > 1 - (½ + C ) (~~)

E(F t tm,Z m
t
in

It follows in the manner similar to Section 2 that V

(3.11) him POin .~~~ ~ 
+ x/~Q > exp(-e~~) .

(It should be noted that r
~ 

“a exp(-cm0) � ~~~~~ Strictly speaking, the
in
0

normalized constants for the F process should be with r~ replaced by r~ 
but

In0
V 

it is easy to see that this does not make any difference in the limit.)

The procedure for the rest of the proof is now apparent. We define a new

-1 k
k = [r {exp(-c(ni + 2m , (2n m )

The fact that 
~PLqh = ~ ‘~tP,L ~tq,h 

decreases rapidly to zero for p-q > m0 is

quite obvious. The rest of the arguments are very similar and hence not

repeated.

4. EXAMPLES AND DISCUSSION : Examples of covariance functions {rk} satisfying

t (2.1) and (2.2) are given by convex {rk}, rk = k 1(Zn k)~’ for k > k0, 0 < y < 1

and 2. € ifi . (Defined appropriately on (0,k0] to make it convex). For {rk}

-VVj  i
VVVV ~~~~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ V~V - -
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satisfying (3,1) and (3.2) , we give again convex {rk}, rk = (in k)4 for

k > k 0 a n d & > 0 .

The proof of the result 
~ 

~~~~~~~~ ~~
. 

~~~~ 
+ x/x1~) = exp(-e’~ ) can be greatly

reduced by the observation [
k/rk½ = B(r k )/ r k

½ and the result of Darling and

Erd6s [3] as given in (3.1) of Robbins and Siegmund [10]. Darling and Erd6s

do not state their result in the form (3.1) of [10]. Also their proof of

Theorem 1 in [3] is quite complicated. Theorem 1 of [3] is a particular case

of Theorem 2.1 and the last part of Theorem 3.1 offers an aiternative proof for

(3.1) of [10].
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